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1. Introduction

Since the original proposal of Dijkgraaf, Verlinde and Verlinde [1] for quarter BPS dyon

spectrum in heterotic string theory compactified on T 6, there has been extensive study of

dyon spectrum in a variety of N = 4 supersymmetric string theories [2 – 18] and also in

N = 8 and N = 2 supersymmetric string theories [19, 20]. However it has been realised for

some time that even in heterotic string theory on T 6 the proposal of [1] gives the correct

dyon spectrum only for a subset of dyons, — those with unit torsion, i.e. for which the

electric and magnetic charge vectors Q and P satisfy gcd(Q ∧ P )=1 [14, 21, 22]. In a

previous paper we proposed a general set of constraints which must be satisfied by the

partition function of quarter BPS dyons in any N = 4 supersymmetric string theory and

used these constraints to propose a candidate for the dyon partition function for torsion

two dyons in heterotic string theory on T 6 [23]. In this paper we extend our analysis to

dyons of arbitrary torsion and propose a form of the partition function of such dyons.

2. Proposal for the partition function

We consider the set B of all dyons of charge vectors (Q,P ) in heterotic string theory on T 6,

with Q being r times a primitive vector, P a primitive vector and Q/r and P admitting a

primitive embedding in the Narain lattice [24, 25], i.e. all lattice vectors lying in the plane of

Q and P can be expressed as integer linear combinations of Q/r and P . These dyons have

torsion r, i.e. gcd(Q ∧ P ) = r. It was shown in [21, 22] that given any pair (Q,P ) of this

type with the same values of Q2, P 2 and Q·P , they are related by T-duality transformation.

We denote by d(Q,P ) the index measuring the number of bosonic supermultiplets minus

the number of fermionic supermultiplets of quarter BPS dyons carrying charges (Q,P ) —

up to a normalization this can be identified with the helicity supertrace B6 introduced

– 1 –



J
H
E
P
0
5
(
2
0
0
8
)
0
9
8

in [26]. T-duality invariance of the theory tells us that d(Q,P ) must be a function of the

T-duality invariants, and hence has the form f(Q2, P 2, Q · P ). Then the dyon partition

function 1/Φ̌(ρ̌, σ̌, v̌) is defined as

1

Φ̌(ρ̌, σ̌, v̌)
=

∑

Q2,P 2,Q·P

(−1)Q·P+1f(Q2, P 2, Q · P ) eiπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) . (2.1)

The sum in (2.1) runs over all possible values of Q2, P 2 and Q · P in the set B. This in

particular requires

Q2/2 ∈ r2
Z, P 2/2 ∈ Z, Q · P ∈ rZ . (2.2)

The imaginary parts of (ρ̌, σ̌, v̌) in (2.1) need to be adjusted to lie in a region where the

sum is convergent. Although the index f and hence the partition function 1/Φ̌ so defined

could depend on the domain of the asymptotic moduli space of the theory in which we are

computing the partition function [13, 18, 22, 23], in all known examples the dependence

of Φ̌ on the domain is found to come through the region of the complex (ρ̌, σ̌, v̌) plane in

which the sum is convergent. Thus (2.1) computed in different domains in the asymptotic

moduli space of the theory describes the same analytic function Φ̌ in different domains in

the complex (ρ̌, σ̌, v̌) plane. We shall assume that the same feature holds for the partition

function under consideration.

Since the quantization laws of Q2, P 2 and Q ·P imply that Φ̌(ρ̌, σ̌, v̌) is periodic under

independent shifts of ρ̌, σ̌ and v̌ by 1, 1/r2 and 1/r respectively, eq.(2.1) can be inverted as

d(Q,P ) = (−1)Q·P+1r3

∫ iM1+1/2

iM1−1/2
dρ̌

∫ iM2+1/(2r2)

iM2−1/(2r2)
dσ̌

∫ iM3+1/(2r)

iM3−1/(2r)
dv̌

×e−iπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) 1

Φ̌(ρ̌, σ̌, v̌)
, (2.3)

provided the imaginary parts M1, M2 and M3 of ρ̌, σ̌ and v̌ are fixed in a region where the

original sum (2.1) is convergent.

Our proposal for Φ̌(ρ̌, σ̌, v̌) is

Φ̌(ρ̌, σ̌, v̌)−1 =
∑

s ∈ ̥, s|r
s̄ ≡ r/s

g(s)
1

s̄3

s̄2−1
∑

k=0

s̄−1
∑

l=0

Φ10

(

ρ̌, s2σ̌ +
k

s̄2
, sv̌ +

l

s̄

)−1

, (2.4)

where

g(s) = s , (2.5)

and Φ10(ρ̌, σ̌, v̌) is the weight 10 Igusa cusp form of Sp(2, Z). The sum over k and l in (2.4)

makes Φ̌ periodic under σ̌ → σ̌ + (1/r2) and v̌ → v̌ + (1/r) as required. Even though the

function g(s) has a simple form given in (2.5), we shall carry out our analysis keeping g(s)

arbitrary so that we can illustrate at the end how we fix the form of g(s) from the known

wall crossing formula for decay into a pair of primitive half-BPS dyons. In particular we

shall show that across a wall of marginal stability associated with the decay of the original

quarter BPS dyon into a pair of half BPS states carrying charges (Q1, P1) and (Q2, P2) with

– 2 –
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(Q1, P1) being N1 times a primitive lattice vector and (Q2, P2) being N2 times a primitive

lattice vector, the index jumps by an amount

∆d(Q,P ))=(−1)Q1 ·P2−Q2·P1+1(Q1 ·P2−Q2 ·P1)







∑

L1|N1

dh

(

Q1

L1
,
P1

L1

)













∑

L2|N2

dh

(

Q2

L2
,
P2

L2

)







(2.6)

for the choice g(s) = s in (2.4). Here dh(q, p) denotes the index of half BPS states carrying

charges (q, p). When N1 = N2 = 1 both the decay products are primitive and (2.6) reduces

to the standard wall crossing formula [13, 27 – 34].

Substituting (2.4) into (2.3), extending the ranges of σ̌ and v̌ integral with the help of

the sums over k and l, and using the periodicity of Φ10 under integer shifts of its arguments

we can get a simpler expression for the index:

d(Q,P ) = (−1)Q·P+1
∑

s|r

g(s) s3

∫ iM1+1/2

iM1−1/2
dρ̌

∫ iM2+1/(2s2)

iM2−1/(2s2)
dσ̌

∫ iM3+1/(2s)

iM3−1/(2s)
dv̌

×e−iπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) Φ10

(

ρ̌, s2σ̌, sv̌
)−1

. (2.7)

The set of dyons considered above contains only a subset of dyons of torsion r. This

subset is known to be invariant under a Γ0(r) subgroup of the S-duality group [22]. This

requires Φ̌ to be invariant under the transformation [23]

Φ̌(ρ̌′, σ̌′, v̌′) = Φ̌(ρ̌, σ̌, v̌) for

(

ρ̌′ v̌′

v̌′ σ̌′

)

=

(

d b

c a

)(

ρ̌ v̌

v̌ σ̌

)(

d c

b a

)

,

a, c, d ∈ Z, b ∈ rZ, ad − bc = 1 . (2.8)

On the other hand a general S-duality transformation matrix

(

a b

c d

)

outside Γ0(r) will

take us to dyons of torsion r outside the set B [22]. Thus with the help of these S-duality

transformations on Φ̌ we can determine the partition function for other torsion r dyons

lying outside the set B considered above. In particular if we consider the set of dyons

carrying charges (Q′, P ′) related to (Q,P ) via an S-duality transformation

(Q,P ) = (aQ′ + bP ′, cQ′ + dP ′),

(

a b

c d

)

∈ SL(2, Z) , (2.9)

and denote by 1/Φ̌′ the partition function of these dyons, then Φ̌′ is related to Φ̌ via the

relation

Φ̌′(ρ̌′, σ̌′, v̌′) = Φ̌(ρ̌, σ̌, v̌) for

(

ρ̌′ v̌′

v̌′ σ̌′

)

=

(

d b

c a

)(

ρ̌ v̌

v̌ σ̌

)(

d c

b a

)

. (2.10)

This allows us to determine the partition function of all other sets of torsion r dyons from

the partition function given in (2.4). In particular for r = 2, choosing

(

a b

c d

)

=

(

1 1

0 1

)

we

recover the dyon partition function proposed in [23].
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We shall now show that the proposed partition function (2.4) satisfies various consis-

tency tests described in [23].

3. S-duality invariance

We shall first verify the required S-duality invariance of the partition function described

in eq.(2.8). Using Sp(2, Z) invariance of Φ10(x, y, z), and that b is a multiple of r for
(

a b

c d

)

∈ Γ0(r) one can show that

Φ10

(

ρ̌′, s2σ̌′ +
k

s̄2
, sv̌′ +

l

s̄

)

= Φ10

(

ρ̌, s2σ̌ +
k′

s̄2
, sv̌ +

l′

s̄

)

, (3.1)

where

k′ = kd2 − 2cdlr ∈ Z, l′ = (ad + bc)l − bdk/r ∈ Z . (3.2)

Thus

s̄2−1
∑

k=0

s̄−1
∑

l=0

Φ10

(

ρ̌′, s2σ̌′ +
k

s̄2
, sv̌′ +

l

s̄

)−1

=

s̄2−1
∑

k′=0

s̄−1
∑

l′=0

Φ10

(

ρ̌, s2σ̌ +
k′

s̄2
, sv̌ +

l′

s̄

)−1

, (3.3)

and we have the required relation (2.8).

4. Wall crossing formula

We shall now verify that (2.7) is consistent with the wall crossing formula. As in [23] we

shall only consider the decay into a pair of half-BPS dyons [13, 35 – 37]

(Q,P ) → (Q1, P1) + (Q2, P2) , (4.1)

(Q1, P1) = (αQ + βP, γQ + δP ), (Q2, P2) = (δQ − βP,−γQ + αP ) , (4.2)

αδ = βγ, α + δ = 1 . (4.3)

Since any lattice vector lying in the plane of Q and P can be expressed as a linear com-

bination of Q/r and P with integer coefficients, we must have β, δ, α ∈ Z, γ ∈ Z/r. Thus

we can write γ = γ′/K, where K ∈ Z, K|r and gcd(γ′,K)=1. The condition αδ = βγ

together with the integrality of α, β, δ now tells us that β must be of the form Kβ′ with

β′ ∈ Z. Thus we have

β = K β′, γ =
γ′

K
, K,α, δ, β′ , γ′ ∈ Z, K|r, gcd(γ′,K) = 1 . (4.4)

Using eqs.(4.3), (4.4) we have

α + δ = 1, αδ = β′γ′, α, β′, γ′, δ ∈ Z . (4.5)

The analysis of [13] now shows that we can find a′, b′, c′, d′ such that

α = a′d′, β′ = −a′b′, γ′ = c′d′, δ = −b′c′, a′, b′, c′, d′ ∈ Z, a′d′ − b′c′ = 1 . (4.6)

– 4 –
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As a consequence of (4.6) and the relation gcd(γ′,K) = 1 we have

gcd(a′, b′)=gcd(a′, c′)=gcd(c′, d′)=gcd(b′, d′)=1, gcd(c′,K)=gcd(d′,K) = 1 . (4.7)

Using eqs.(4.4)-(4.6) we can now express (4.2) as

(Q1, P1) = (a′K, c′)(d′K̄Q/r − b′P ), (Q2, P2) = (b′K,d′)(−c′K̄Q/r + a′P ), (4.8)

K̄ ≡ r/K . (4.9)

Since according to (4.7), gcd(a′K, c′)=1, gcd(b′K,d′)=1, and since any lattice vector lying

in the Q-P plane can be expressed as integer linear combinations of Q/r and P , it follows

from (4.8) that (Q1, P1) can be regarded as N1 times a primitive vector and (Q2, P2) can

be regarded as N2 times a primitive vector where

N1 = gcd(d′K̄, b′) = gcd(K̄, b′), N2 = gcd(c′K̄, a′) = gcd(K̄, a′) . (4.10)

In the last steps we have again made use of (4.7). It follows from (4.7) and (4.10) that

gcd(N1, N2) = 1, N1N2|K̄ . (4.11)

We shall now use the formula (2.7) for the index in different regions of the moduli space

and calculate the change in the index as we cross the wall of marginal stability associated

with the decay (4.1). For this we need to know how to choose the imaginary parts of

ρ̌, σ̌ and v̌ along the integration contour for the two domains lying on the two sides of

this wall of marginal stability. A prescription for choosing this contour was postulated

in [23] according to which as we cross the wall of marginal stability associated with the

decay (4.1), the integration contour crosses a pole of the partition function at

ρ̌γ − σ̌β + v̌(α − δ) = 0 . (4.12)

Thus the change in the index can be calculated by evaluating the residue of the partition

function at this pole. We shall now examine for which values of s the Φ10(ρ̌, s2σ̌, sv̌)−1 term

in the expansion (2.7) has a pole at (4.12). The poles of Φ10(ρ̌, s2σ̌, sv̌)−1 are known to be at

n2 s2 (ρ̌σ̌ − v̌2) + n1s
2σ̌ − m1ρ̌ + m2 + jsv̌ = 0

m1, n1,m2, n2 ∈ Z, j ∈ 2Z + 1, m1n1 + m2n2 +
j2

4
=

1

4
. (4.13)

Comparing (4.13) and (4.12) we see that we must have

m2 = n2 = 0, j =
λ

s
(α − δ), n1 = −

λ

s2
β, m1 = −λγ , (4.14)

for some λ. The last condition in (4.13), together with eqs.(4.3) now gives

λ = s . (4.15)

Thus we have from (4.4), (4.14)

j = α − δ, m1 = −sγ = −γ′s/K, n1 = −β/s = −Kβ′/s . (4.16)

– 5 –
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Since gcd(γ′,K) = 1, the second equation in (4.16) shows that s must be a multiple of K:

s = K s̃, s̃ ∈ Z . (4.17)

Substituting this into the last equation in (4.16) and using (4.6) we see that

n1 =
a′b′

s̃
⇒

a′b′

s̃
∈ Z . (4.18)

Since gcd(a′, b′)=1, we must have a unique decomposition

s̃ = L1L2, L1|b
′, L2|a

′ . (4.19)

On the other hand since s divides r, it follows from (4.17) that s̃ must divide r/K = K̄.

Thus

L1|K̄, L2|K̄ . (4.20)

It now follows from (4.10) that

L1|N1, L2|N2 . (4.21)

Conversely, given any pair (L1, L2) satisfying (4.21), it follows from (4.10) that L1, L2

will satisfy (4.19), (4.20). This allows us to find integers m1, n1, j satisfying (4.14) via

eqs. (4.15)–(4.19).

This shows that the poles of Φ̌(ρ̌, σ̌, v̌)−1 at (4.12) can come from the s = KL1L2

terms in (2.4) for L1|N1 and L2|N2. Our next task is to find the residues at these poles to

compute the change in the index as we cross this wall. For this we define

ā = a′/L2, d̄ = d′L2, b̄ = b′/L1, c̄ = c′L1, s0 = KL1L2 . (4.22)

It follows from (4.19) that ā, b̄, c̄, d̄ are all integers. In terms of these variables the location

of the pole given in (4.12) can be expressed as

s−1
0 c̄d̄ρ̌ + āb̄s0σ̌ + (ād̄ + b̄c̄)v̌ = 0 . (4.23)

We now define

ρ̌′ = d̄2ρ̌ + b̄2s2
0σ̌ + 2b̄d̄s0v̌, σ̌′ = c̄2ρ̌ + ā2s2

0σ̌ + 2āc̄s0v̌,

v̌′ = c̄d̄ρ̌ + āb̄s2
0σ̌ + (ād̄ + b̄c̄)s0v̌ . (4.24)

The change of variables from (ρ̌, s2
0σ̌, s0v̌) to (ρ̌′, σ̌′, v̌′) is an Sp(2, Z) transformation. Thus

we have

Φ10(ρ̌, s2
0σ̌, s0v̌) = Φ10(ρ̌

′, σ̌′, v̌′) . (4.25)

In the primed variables the desired pole at (4.23) is at v̌′ = 0. We also have

ρ̌P 2 + σ̌Q2 + 2v̌Q · P = ρ̌′P ′2 + σ̌′Q′2 + 2v̌′Q′ · P ′ , (4.26)

where

Q′ = d̄ Q/s0 − b̄P, P ′ = −c̄Q/s0 + āP . (4.27)

– 6 –
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Finally we have

dρ̌′dσ̌′dv̌′ = s3
0dρ̌dv̌dσ̌ . (4.28)

This is consistent with the fact that Φ10(ρ̌
′, σ̌′, v̌′) is invariant under integer shifts in ρ̌′, σ̌′

and v̌′ so that in the primed variables the volume of the unit cell is 1, while in the unprimed

variables the volume of the unit cell is 1/s3
0. We can now express the change in the index

from the s = s0 term in (2.7) as

(∆d(Q,P ))s0
= (−1)Q·P+1 g(s0)

∫ iM ′

1
+1/2

iM ′

1
−1/2

dρ̌′
∫ iM ′

2
+1/2

iM ′

2
−1/2

dσ̌′

∮

dv̌′

×e−iπ(σ̌′Q′2+ρ̌′P ′2+2v̌′Q′·P ′) Φ10

(

ρ̌′, σ̌′, v̌′
)−1

, (4.29)

where the v̌′ contour is around the origin, — as in [23] we shall use the convention that

the contour is in the clockwise direction. Using the fact that

Φ10

(

ρ̌′, σ̌′, v̌′
)

= −4π2 v̌′2 η(ρ̌′)24 η(σ̌′)24 + O
(

v̌′4
)

, (4.30)

near v̌′ = 0, we get

(∆d(Q,P ))s0
= (−1)Q·P+1 g(s0)Q′ · P ′

∫ iM ′

1
+1/2

iM ′

1
−1/2

dρ̌′e−iπρ̌′P ′2

η(ρ̌′)−24

×

∫ iM ′

2
+1/2

iM ′

2
−1/2

dσ̌′e−iπσ̌′Q′2

η(σ̌′)−24

= (−1)Q·P+1 g(s0)Q′ · P ′ dh(Q′, 0) dh(P ′, 0) , (4.31)

where dh(q, 0) denotes the index measuring the number of bosonic half BPS supermultiplets

minus the number of fermionic half BPS supermultiplets carrying charge (q, 0).

We shall now express the right hand side of (4.31) in terms of the charges (Q1, P1) and

(Q2, P2) of the decay products. First of all it is easy to see that

(−1)Q·P = (−1)Q1·P2−Q2·P1 . (4.32)

Furthermore it follows from (4.8), (4.22) and (4.27) that

(Q1, P1) = L1

(

a′KQ′, c′Q′
)

, (Q2, P2) = L2

(

b′KP ′, d′P ′
)

, (4.33)

Q1 · P2 − Q2 · P1 = s0 Q′ · P ′ . (4.34)

Now according to (4.7) the pair of integers (a′K, c′) are relatively prime, and the pair of

integers (b′K,d′) are also relatively prime. Thus using S-duality invariance we can write

dh

(

Q1

L1
,
P1

L1

)

= dh

(

a′KQ′, c′Q′
)

= dh(Q′, 0),

dh

(

Q2

L2
,
P2

L2

)

= dh

(

b′KP ′, d′P ′
)

= dh(P ′, 0) . (4.35)

Using (4.32), (4.34) and (4.35) we can now express (4.31) as

(∆d(Q,P ))s0
= (−1)Q1·P2−Q2·P1+1 g(s0)

1

s0
(Q1 ·P2 −Q2 ·P1) dh

(

Q1

L1
,
P1

L1

)

dh

(

Q2

L2
,
P2

L2

)

.

(4.36)

– 7 –
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For a given decay K is fixed but L1 and L2 can vary over all the factors of N1 and N2.

Thus the total change in the index is obtained by summing over all possible values of s0

of the form KL1L2. Thus gives

∆d(Q,P )) = (−1)Q1·P2−Q2·P1+1 (Q1 · P2 − Q2 · P1)

×
∑

L1|N1

∑

L2|N2

g(KL1L2)
1

KL1L2
dh

(

Q1

L1
,
P1

L1

)

dh

(

Q2

L2
,
P2

L2

)

. (4.37)

We can now fix the form of the function g(s) by considering a decay where the decay

products are primitive, i.e. N1 = N2 = 1. In this case we have L1 = L2 = 1, and (4.37)

takes the form1

∆d(Q,P )) = (−1)Q1·P2−Q2·P1+1 (Q1 · P2 − Q2 · P1) g(K)
1

K
dh(Q1, P1) dh(Q2, P2) . (4.38)

In order that this agrees with the standard wall crossing formula for primitive decay [13, 27 –

33] we must have g(K) = K. Since this result should hold for all K|r we see that we must

set g(s) = s as given in (2.5). Using this we can simplify the wall crossing formula (4.37)

for generic non-primitive decays to the form given in (2.6).

5. Black hole entropy

In order to reproduce the leading contribution to the black hole entropy in the limit of

large charges, the partition function must have a pole at [1]

ρ̌σ̌ − v̌2 + v̌ = 0 . (5.1)

Furthermore, in order to reproduce the black hole entropy to first non-leading order, the

inverse of the partition function near this pole must behave as [2, 23]

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ − σ)10
{

v2 η(ρ)24 η(σ)24 + O
(

v4
)}

, (5.2)

where

ρ =
ρ̌σ̌ − v̌2

σ̌
, σ =

ρ̌σ̌ − (v̌ − 1)2

σ̌
, v =

ρ̌σ̌ − v̌2 + v̌

σ̌
. (5.3)

1In this argument we have implicitly assumed that for a given K, it is possible to find integers a′, b′,

c′, d′ satisfying a′d′
− b′c′ = 1, gcd(c′, K) = gcd(d′, K) = gcd(a′, K̄) = gcd(b′, K̄) = 1, so that (4.7) holds

and we have N1 = N2 = 1 according to (4.10). If either K or K̄ is odd then this assumption holds with

the choice

 

a′ b′

c′ d′

!

=

 

2 1

1 1

!

or

 

1 1

1 2

!

. If K and K̄ are both even then we cannot find a′, b′, c′ and d′

satisfying all the requirements since in order to satisfy a′d′
− b′c′ = 1 at least one of them must be even.

However in this case if we choose

 

a′ b′

c′ d′

!

=

 

2 1

1 1

!

then we satisfy (4.7) and have N1 = 1 and N2 = 2

according to (4.10). We can now demand that the wall crossing formula in this case agrees with the one

derived in [23] for decays where one of the decay products is twice a primitive vector. This gives g(K) = K

even for K, K̄ both even.
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We shall now examine the poles of Φ̌ given in (2.4) to see if it satisfies the above relations.

For this we recall eq.(4.13) giving the pole of Φ10(ρ̌, s2σ̌, sv̌)−1. Comparing (4.13) with (5.1)

we see that in order to get a pole at (5.1) we must choose in (4.13)

n2 = λ/s2, j = λ/s, n1 = m1 = m2 = 0 , (5.4)

for some λ. The requirement m1n1 + m2n2 + 1
4j2 = 1

4 then gives

λ = s, n2 =
1

s
. (5.5)

Since n2 must be an integer this gives s = 1. Thus only the s = 1 term in (2.4) has a pole

at (5.1). It follows from the known behaviour of Φ10 near its zeroes that Φ̌ defined in (2.4)

satisfies the requirement (5.2).

6. Gauge theory limit

Finally we shall show that in special regions of the Narain moduli space where the low lying

states in string theory describe a non-abelian gauge theory, the proposed dyon spectrum of

string theory reproduces the known results in gauge theory. Since the T-duality invariant

metric L in the Narain moduli space descends to the negative of the Cartan metric in gauge

theories, and since the Cartan metric is positive definite, all the gauge theory dyons have

the property

Q2 < 0, P 2 < 0, Q2P 2 > (Q · P )2 . (6.1)

Thus in order to identify dyons which could be interpreted as gauge theory dyons in an

appropriate limit we must focus on charge vectors satisfying (6.1).

In order to identify such dyons we need to expand the partition function Φ̌−1 in powers

of e2πiρ̌, e2πiσ̌ and e2πiv̌ and pick up the appropriate terms in the expansion. For this we

need to identify a region in the (ρ̌, σ̌, v̌) space (or equivalently in the asymptotic mod-

uli space) where we carry out the expansion, since in different regions we have different

expansion. We shall consider the region

ℑ(ρ̌),ℑ(σ̌) ≫ −ℑ(v̌) ≫ 1 , (6.2)

where ℑ(z) denotes the imaginary part of z. The results in other relevant regions will be

related to the ones in this region by S-duality transformation. In the region (6.2) the only

term in Φ10

(

ρ̌, s2σ̌ + k
s̄2 , sv̌ + l

s̄

)−1
which has powers of e2πiρ̌, e2πiσ̌ and e2πiv̌ compatible

with the requirement (6.1) is

e−2πiρ̌−2πi(s2σ̌+ k

s̄2
)−2πi(sv̌+ l

s̄
) . (6.3)

This is in fact the leading term in the expansion in the limit (6.2). Substituting this

into (2.4) and performing the sum over k and l we see that only the s = r term in the sum

survives and the result is

r e−2πi(ρ̌+r2σ̌+rv̌) . (6.4)
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This corresponds to dyons with

Q2/2 = −r2, P 2/2 = −1, Q · P = −r , (6.5)

with an index of (−1)r+1 r.

We can also determine the walls of marginal stability which border the domain in

which these dyons exist. This requires determining the region in the (ℑ(ρ̌),ℑ(σ̌),ℑ(v̌))

space in which the expansion (6.4) of Φ10(ρ̌, r2σ̌, rv̌)−1 is valid since then we can determine

the associated walls of marginal stability using (4.12). For this we shall utilize the known

results for r = 1; in this case the walls of marginal stability bordering the domain in

which (6.4) is valid correspond to the decays into (Q, 0) + (0, P ), (Q − P, 0) + (P,P )

and (0, P − Q) + (Q,Q) respectively [38]. Using (4.12) we now see that validity of the

expansion of Φ10(ρ̌, σ̌, v̌)−1 given by (6.4) with r = 1 is bounded by the following surfaces

in the (ℑ(ρ̌),ℑ(σ̌),ℑ(v̌)) space:

ℑ(v̌) = 0 , ℑ(v̌ + σ̌) = 0, ℑ(v̌ + ρ̌) = 0 . (6.6)

We can now simply scale σ̌ by r2 and v̌ by r to determine the region of validity of the

expansion (6.4) for Φ10(ρ̌, r2σ̌, rv̌):

ℑ(v̌) = 0 , ℑ(v̌ + rσ̌) = 0, ℑ(rv̌ + ρ̌) = 0 . (6.7)

Comparing these with (4.12) we now see that the corresponding walls of marginal stability

are associated with the decays into

(Q, 0) + (0, P ), (Q − rP, 0) + (rP, P ),

(

0, P −
1

r
Q

)

+

(

Q,
1

r
Q

)

. (6.8)

Let us now compare these results with dyons in N = 4 supersymmetric SU(3) gauge

theory. If we denote by α1 and α2 a pair of simple roots of SU(3) with α2
1 = α2

2 = −2 and α1·

α2 = 1, then the analysis of [39 – 43] shows that the gauge theory contains dyons of charge

(Q,P ) = (rα1,−α2) , (6.9)

with index (−1)r+1 r. These are precisely the dyons of the type given in (6.5). Further-

more using string junction picture [44, 45], ref. [39] also determined the walls of marginal

stability bordering the domain in which these dyons exist. These also coincide with (6.8).

The spectrum in gauge theory contains other dyons of torsion r related to the ones

described above by S-duality transformation. Since our construction is manifestly S-duality

invariant, the results for these dyons can also be reproduced from the general formula given

in (2.4).

Gauge theory also contains other dyons which are not related to the ones described

here by S-duality [41, 42]. These typically require higher gauge groups and has additional

fermionic zero modes besides the ones required by broken supersymmetry. Quantization of

these additional zero modes gives rise to additional bose-fermi degeneracy, and as a result

the index being computed here vanishes for these dyons. This is also apparent from the

fact that these dyons typically exist only in a subspace of the full moduli space; as a result

when we move away from this subspace the various states combine and become non-BPS.

Some aspects of these dyons have been discussed recently in [46, 43].
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